

THE PROJECT

WHAT IS A SUPERCAPACITOR ?

SPECIFICATIONS / REQUIREMENTS

MANUFACTURING & TESTS

CONCLUSIONS & PERSPECTIVES

THE PROJECT

Partners / Project Tasks

the prime contractor in charge of the development of the **B**ank **O**f **S**uper**c**apacitor Cells (BOSC) and in particular of its packaging structure

the end-user in charge of the Requirements review, Support to Technology Review, Design Trade-Off and Roadmap

the electrical cells manufacturer in charge of the development of the BOSC and in particular of its electrochemical cells

the supervisor and financial support

THE PROJECT

Localisation / Key Competencies / Expertise

- Project Management
- Quality assurance
- Design
- Analysis
- Assembly and Integration
- Testing

Space enablers

- Communicating
- Positioning
- Improving
- Protecting
- Browsing
- Anticipating
- Project Management
 - Design
- Analysis
- Electrical Testing

- High precision mechanisms
- Ultra-stable structures
- Integrated Systems
- Thermal Hardware

- System Design
- Composite materials
- Energetic materials
- Liquid and solid propellants
- Integration
- Growth VACNT
- Carbon electrodes for EDLC
- Pouch-cell assembly
- Electrical characterizations
- Electrochemical deposition of conducting polymer

arianegroup

агшатесн

CH-1015 Lausanne

SUISSE

EPFL Innovation Park, Bâtiment D

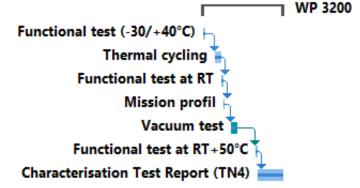
51-61 Route de Verneuil 78133 Les Mureaux FRANCE

NAWATECHNOLOGIES

190 avenue Célestin Coq 13106 Rousset FRANCE

агшатесн

THE PROJECT WBS: 3 Workpackages / 5 Tasks WP 3000 WP 1000 WP 2000 Manufacturing , Project Management & Engineering Assembly and Testing PA WP 3100 WP 1100 WP 2100 TASK Development and Project Management & Requirements Review TASK 3 Characterization Plan PA/QA WP 3110 Cells Development WP 2200 Fabrication Technology Review, TASK and Design Trade-Off агшатесн WP 2300 WP 3200 TASK 4 Support for Task 2, 3 Test and Optimization and 5 **ariane**Group WP 2400 WP 3210 Support for Task 2 and NAWATECHNOLOGIES Functional Tests and 5 Life Tests WP 2500 TASK 5 Roadmap


агшатесн

1

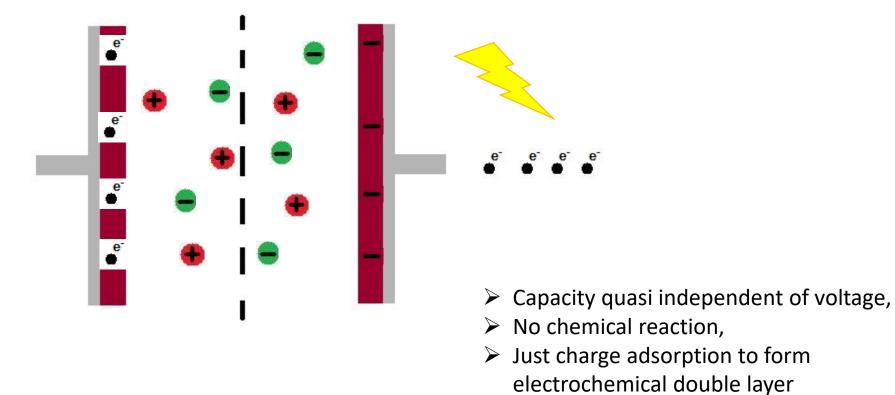
THE PROJECT PLANNING

Kick-Off Meeting	Feb. 2017	TO
PDR	June 2017	5
TRR	June 2019	29
CDR / TRB	sept19	32
Final Review	nov19	34

Functional and Life test	Mon 01.07.19	Thu 05.09.19	
Functional test (-30/+40°C)	Mon 01.07.19	Tue 02.07.19	Functio
Thermal cycling	Thu 11.07.19	Mon 15.07.19	
Functional test at RT	Tue 16.07.19	Wed 17.07.19	
Mission profil	Thu 18.07.19	Thu 18.07.19	
Vacuum test	Wed 24.07.19	Mon 29.07.19	
Functional test at RT+50°C	Wed 14.08.19	Thu 15.08.19	
Characterisation Test Report (TN4)	Fri 16.08.19	Thu 05.09.19	Charac

Device for electrical energy storage between battery and conventional capacitor

Supercapacitor is NOT a battery


Capacitive operating and no faradic system
 Capacity quasi independent of voltage,
 No chemical reaction, just charge adsorption to form electrochemical double layer

Advantage	Inconvenient	
Long life cycle	Low specific energy	Electrolyte Separator
High power density	Linear voltage decreasing during discharge	
High current	High self-discharge	
Large operating window in term of temperature		Metallio
Safer operating		
		Active
		Electrode material

WHAT IS A SUPERCAPACITOR ?

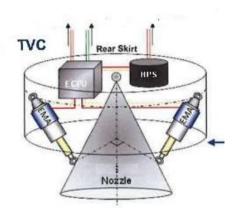
Electrochemical Capacitive Mechanism

Charge Loading Process

Supercapacitor for Launcher Applications

агшатесн

SPECIFICATIONS / REQUIREMENTS Launcher Applications


✓ 3 identified needs for Launcher applications:
 □ Electromechanical Thrust Vector Actuation System (EMTVAS)

Pyrotechnics Power Supply

□ Safeguard

> Determination of Specifications and Requirements for **each** application

SPECIFICATIONS / REQUIREMENTS

Launcher Applications

✓ 3 identified needs for Launcher applications:

Electromechanical Thrust Vector Actuation System (EMTVAS)

```
    Pyrotechnics Power Supply
```

Galage Safeguard

- But in term of technical specifications (power density, energy density), only Pyrotechnic
 Power Supply could be reasonably realise with only supercapacitor cells
- EMTVAS and Safeguard applications would need hybrid systems (Supercapacitors + Batteries)
- Moreover, the quantity of cells needed for one BOSC is reasonable and compatible with the project (development time, number of cells, production time, cost...)

SPECIFICATIONS / REQUIREMENTS

BOSC for Pyrotechnic Power Supply

Numerous Specifications and Requirements for application

Overview BOSC:

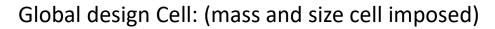
- Available energy 1Wh, 32V
- Operational under 7,5g constant acceleration all axis during 3min
- Functional temperature between -30°C and +70°C
- Dimension max L/H/W : 15/15/10cm for maximum 1kg

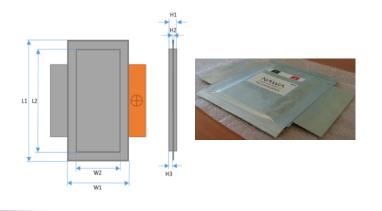
SPECIFICATIONS / REQUIREMENTS

Cells for Pyrotechnic Power Supply

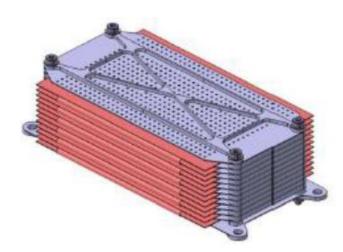
Numerous Specifications and Requirements for application

Overview Cell:


- 11 Cells connected in series
- No electronic balancing
- Capacitance 200 F, Specific energy 15 Wh/kg, Specific Power 20.8 kW/kg, Maximum voltage 3.3 V
- Functional temperature between -30°C and +70°C
- Mass Cell 15g


MANUFACTURING & TESTS BOSC & Cells design

Global design BOSC:


Hard support system with a possibility to easy adapt the number of integrated cells with less design modification and without degradation of mechanical performances

- Large Tab for high current
- Pouch-cell configuration cell for maximize ratio active / inactive mass for complete system (BOSC)

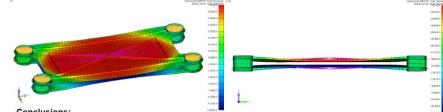
агшатесн

MANUFACTURING & TESTS Cells Technologies

No technology commercially available to match the desired performances

> Numerous investigated electrode technologies: (measured data except requirement)

Technology	Maximum Voltage (V)	Mass (g)	Capacitance / F	Specific energy (Wh/kg)	Specific Power(kW/kg)	Voltage (V)
Requirements	3,3	15,0	200	15,0	20,8	2,85
Cell VACNT- Power (1st gen)	3,3	17,5	9	0,7	9,3	3,3
Hybride cell	2,7	10,0	35	3,0	2,5	2,5
Energy Cell (1st generation)	2,5	10,0	84	7,3	1,0	2,5
Energy Cell (final project)	2,5	10,3	56	4,7	4,9	2,5


4

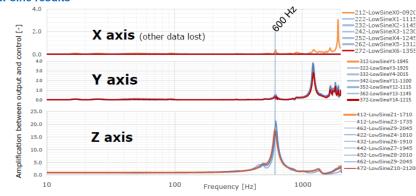
MANUFACTURING & TESTS

Cell support for BOSC

List of potential issues:

 Structural analysis results show (Spread plate modelled): a stress max of 88 MPa (shall be below oyield_7075T73 = 386MPa) and a maximum deformation of the plate of 74µm (shall be below 300µm, minimum epoxy thickness)

Conclusions:


- Stresses are significantly below the allowable structural limit
- Deformation is less than epoxy thickness. No contact between aluminum support plate and pouch cell occurred
- Spring clamped cannot have caused an overpressure inside the pouch cell

Vibration test

Z-axis damping

Test No	CONTROL ACCELERATION	MEASURED ACCELERATION	RATIO OF G _{RMS} ACCEL	AMPLIFICATION	DAMPING	Equivalent Q factor
472 (final Lowsine)	0.496 [g]	8.69 [g]	-	17.5	3.77%	13.3
441 (-12dB)	8.11 [g _{RMS}]	33.75 [g _{RMS}]	4.2	467	3.13%	16.0
451 (-6dB)	16.02 [g _{RMS}]	60.37 [g _{RMS}]	3.8	288	4.77%	10.5
461 (-3dB)	22.31 [g _{RMS}]	49.49 [g _{RMS}]	2.2	70.1	4.34%	11.5
471 (0dB)	31.77 [g _{RMS}]	105.78 [g _{RMS}]	3.3	170	5.96%	8.4

Low sine results

45 67

Total mass of 1 stack = 72g

агшатесн

MANUFACTURING & TESTS

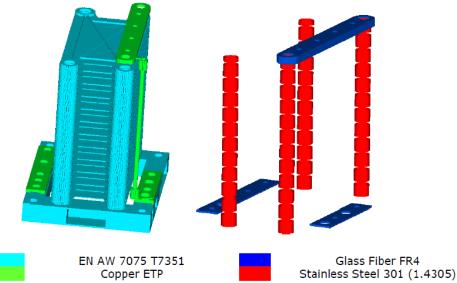
Cells & BOSC Manufacturing

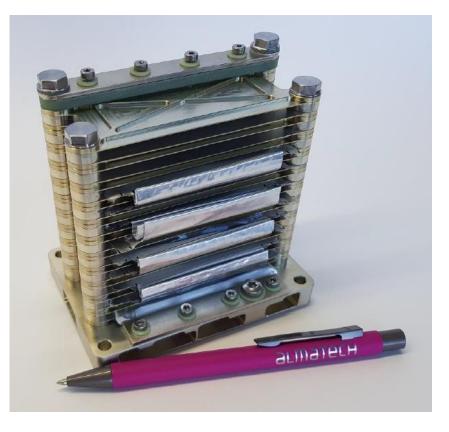
Problems encountered:

No technology commercially available : actual technologies performances under desired performances (volumetric energy ; ratio capacitance/mass...)

Numerous studied optimisations or approaches

- active material (synthesis process) Capacitance,
 Voltage
- electrolyte (formulation) [↗] Temperature range, ↗ Voltage, ↘ Resistance
- inactive material (pouch-cell film)
 Mass
- □ Active Material development in progress (synthesis, electrodes)
- □ Young Cell assembly line: lot of rebut (electrolyte microleak)
- □ Specific integration Cells in BOSC (sizing Cells ; sticking Cell and support, heat curing compatibility ; electrical linked TAB of cells in BOSC...)


MANUFACTURING & TESTS

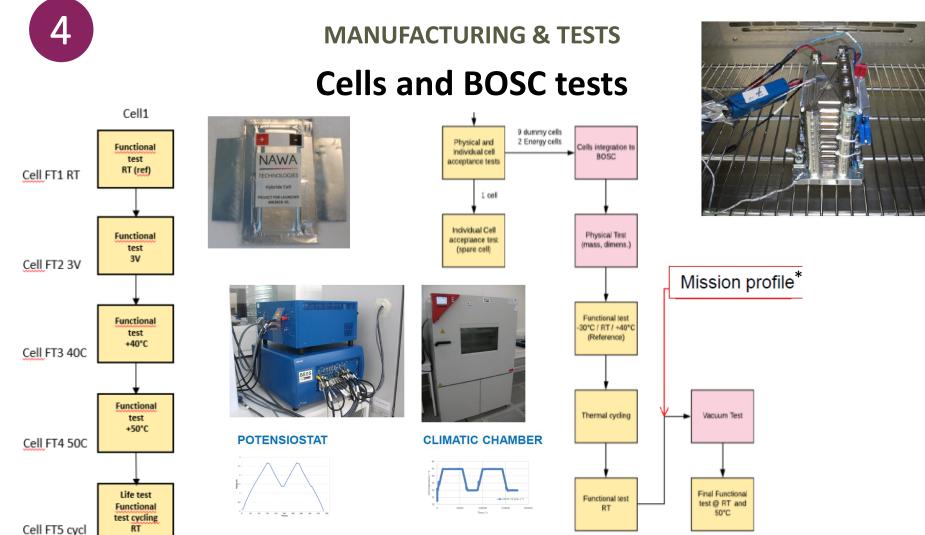

BOSC final design

BOSC: FINAL DESIGN

The Bank Of SuperCapacitors is composed of:

- 2 VACNTs supercapacitor functional cells
- 9 VACNTs supercapacitor dummy cells

агшатесн


4

MANUFACTURING & TESTS Cells and BOSC tests

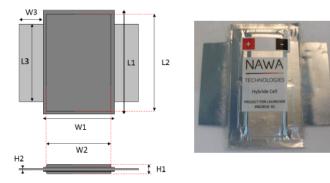
- ➤ 1 sequence of different electrical tests for Cell
- ➤ 1 sequence of different electrical and physical test for BOSC

Different tests : variation of parameters

- □ Electrochemical characterization method (Cyclic Voltametry, Potentio Electrochemical Impedance Spectroscopy, Specific Galvanometry, cycling)
- **Current** applied (1A / 3,5A)
- □ Voltage applied (2,7V / 3V)
- **Temperature** (-30°C / Room Temperature / 40°C / 50°C)
- □ **Pression** atmospheric / Vacuum (low 60mbar / several 10⁻⁵ Torr)

*Mission profile = Multiple discharge peaks of high current (short time less 1 second) no possibility to charge between peaks

агшатесн



MANUFACTURING & TESTS

Cells tests

Compliance matrix

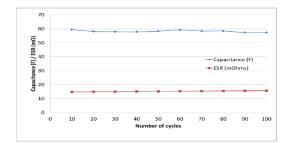
CharacteristicCellSize L1/W1/H1 (mm)80/46/3Mass (g)10,3Energy density
(Wh/kg) at RT / 2,5V4,7Power density
(kW/kg) at RT / 2,5V4,9

Functional test at 23°C (RT) between 0V and 2.70V

Cell n°1	Capacitance (F)	ESR @ 1kHz (mΩ)	Time of charge (s)
I _{discharge} = 1A	56.58	14.03	137
I _{discharge} = 3.5A	60.83	14.03	37

Functional test at 23°C (RT) between 0V and 3.00V

Cell n°1	Capacitance (F)	ESR @ 1kHz (mΩ)	Time of charge (s)
I _{discharge} = 1A	55.56	14.30	N/A
I _{discharge} = 3.5A	59.81	14.30	42


Functional test at 40°C between 0V and 2.70V

Cell n°1	Capacitance (F)	ESR @ 1kHz (mΩ)	Time of charge (s)
I _{discharge} = 1A	55.48	13.30	N/A
I _{discharge} = 3.5A	60.10	13.30	37

Functional test à 50°C between 0V and 2.70V

Cell n°1	Capacitance (F)	ESR @ 1kHz (mΩ)	Time of charge (s)
I _{discharge} = 1A	55.19	13.46	N/A
I _{discharge} = 3.5A	59.35	13.46	37

Cycling test à 23°C (RT) between 0V and 2.70V


агшатесн

MANUFACTURING & TESTS

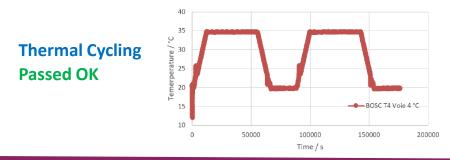
BOSC tests

Characteristic	BOSC
Size L1/W1/H1 (mm)	108.30 / 75.00 / 108.00
Mass (g)	550

Only 2 functional cells linked in series without any electronic management card

Compliance matrix

Functional test at 23°C (RT) between 0V and 5.40V


BOSC	Capacitance (F)	ESR @ 1kHz (mΩ)
I _{discharge} = 1A	22.83	90.50
I _{discharge} = 3.5 A	25.25	90.50

Functional test at -30°C between 0V and 5.40V

BOSC	Capacitance (F)	ESR @ 1kHz (mΩ)
I _{discharge} = 1A	12.92	293
I _{discharge} = 3.5A	0.42	293

Functional test at 40°C between 0V and 5.40V

BOSC	Capacitance (F)	ESR @ 1kHz (mΩ)
I _{discharge} = 1A	22.72	62.53
I _{discharge} = 3.5A	25.20	62.53

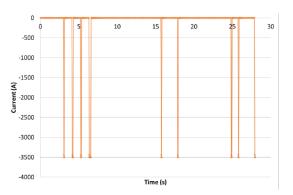
агшатесн

MANUFACTURING & TESTS

BOSC tests

Characteristic	BOSC
Size L1/W1/H1 (mm)	108.30 / 75.00 / 108.00
Mass (g)	550

Only 2 functional cells linked in series without any electronic management card


Compliance matrix

Functional test at 23°C between 0V and 5.40V

BOSC	Capacitance (F)	ESR @ 1kHz (mΩ)
I _{discharge} = 1A	21.37	94.25
I _{discharge} = 3.5A	21.78	94.25

Profile Mission Realised Partially

limited applied current by available test equipment

Vacuum test

Failed

No visible degradation but microleak on cell (high increase of resistance, linked solvent of electrolyte evaporation

CONCLUSIONS & PERSPECTIVES

Conclusions

Project has been completed by end of 2019

- ✓ Functional and technical specifications have been defined after selecting the most promising application to integrate Supercapacitors in Launcher
- ✓ Multiple technologies of supercapacitor cells have been investigated
- ✓ Several productions of different prototypes have been realised, tested and sometimes integrated, not without numerous difficulties
- ✓ A Bank Of Supercapacitor Cells was designed, manufactured and partially tested
- ✓ 2 tests campaigns (for Cells and BOSC) were conducted to completion
- Some performances of the BOSC don't sufficiently meet the targeted requirement
- ✓ But some ways for improvement have already been defined

CONCLUSIONS & PERSPECTIVES Limitation and Outlooks

During the project, NAWA supercapacitors presented some limitation in term of electrical performances (Capacitances of the cells (60F versus 200F expected), Specific Energy (4,7Wh expected versus 15Wh/kg expected), behaviour at negative temperature (-30° C)) and cell structural resistances (behaviour under vacuum)

Some improvement and outlooks:

- Electrical performances of cells: (materials, electrolyte)
- Mechanical design (under vacuum)
- Repeatability BOSC representativity wrt the application (number of functional cells),
- BOSC characterization under vibrations.

CONCLUSIONS & PERSPECTIVES

Perspectives

2022: New assembly line installed at NAWA: **New Machines** to get a **more Robust Process**

New Stacking machines, Pouch-cell Cavity maker, new Ultrasonic Welder, Plastic Sealing machine specific for TAB, new High Current (100A) Test Bench coupled with Ovens...

Acknowledgments

PALISSAT Géraldine

агшатесн

LICHTENBERGER Marc PACIOTTI Gabriel IGLESIAS Angel

NAWATECHNOLOGIES

BOISSET Aurélien BOULANGER Pascal

FARHAT Léo LACOMBE Denis

Thanks

arianegroup

агшатесн

NAWA TECHNOLOGIES

almatech

FARHAT Léo / <u>leo.farhat@esa.int</u> / +31 71 56 58 557

PALISSAT Géraldine / geraldine.palissat@esa.int / +31 71 56 58 917

LICHTENBERGER Marc / marc.Lichtenberger@almatech.ch / +41 78 974 46 92

BOISSET Aurélien / aurelien.boisset@nawatechnologies.com / +33 7 70 47 14 42